Locked mode entrainment with synchronized ECCD deposition

by

W. Choi, K.E.J. Olofsson, R. Sweeney, F. Volpe

Presented at the

MHD Workshop,

General Atomics

Wednesday November 9, 2016
Outline

• Introduction
• Mode entrainment
 • Preemptive entrainment
 • Feedback controller
 • Mode phase control
• Electron cyclotron current drive (ECCD) deposition
 • Deposition location
 • Mode amplitude evolution
• Conclusions and future work
Outline

- Introduction
- Mode entrainment
 - Preemptive entrainment
 - Feedback controller
 - Mode phase control
- Electron cyclotron current drive (ECCD) deposition
 - Deposition location
 - Mode amplitude evolution
- Conclusions and future work
Modeling fixed-width mode dynamics under influence of torques

\[I \frac{d^2 \phi}{dt^2} = T_{wall} + T_{EF} + T_{RMP} + T_{TM} + T_{visc} + T_{NBI} \]

E.M. Torques on Island

Non-E.M. Torques

![Diagram showing 2/1 magnetic island with I-coils and C-coils](image)
Simulation of mode dynamics with some simplifying assumptions

- **Simplified equation of motion**

\[I \frac{d^2 \phi}{dt^2} = T_{wall} + T_{EF} + T_{RMP} \]

- **Condition for smooth entrainment**

\[0 = T_{wall} + T_{RMP} \]

\[T_{wall} = - \frac{[2\pi R B_R(b) r_{mn}^{2m-1}]}{\mu_0 b} \left[\frac{r_{mn}}{b} \right]^{2m-1} \frac{\Omega \tau}{1 + (\Omega \tau)^2} \]

\[T_{EF} = -\pi^2 R^2 m \frac{a}{r_{mn}} I_{EF} B_R(a) \sin[n\phi(t)] \]

\[T_{RMP} = -\pi^2 R^2 m \frac{b}{r_{mn}} I_{RMP} B_R(b) \sin[n\phi(t) - n\phi_{RMP}(t)] \]
Critical steady entrainment frequency depends on island width and coil current

- Max frequency at which smooth entrainment is possible
 - Increases with coil current
 - Decreases with island width

K.E.J. Olofsson PPCF 2016
Outline

• Introduction
• **Mode entrainment**
 • Preemptive entrainment
 • Feedback controller
 • Mode phase control
• **Electron cyclotron current drive (ECCD) deposition**
 • Deposition location
 • Mode amplitude evolution
• Conclusions and future work
Upon locking, neoclassical tearing modes quickly grow and often cause disruption.

If the mode is never actually allowed to lock, perhaps it is less detrimental to the plasma.

Can a pre-existing rotating perturbation be used to prevent mode locking?
Mode locks directly to preemptive, feed forward rotating RMP

Rotating phase:
fast signal lost at 2514 ms
n1rms = 17G
n1freq = 1.04 kHz

Locked to rotating RMP phase:
slow signal found at 2516 ms
freq = 70 Hz

Used 3.6 kA in I-coils, rotating at 70 Hz
Proportional-integral controller for mode phase as implemented in DIII-D

\[\Phi_{\text{error}} = \Phi_{\text{ref}} - \Phi_{\text{mode}} \]

\[\Phi_{\text{correction}} = \text{PI control (} \Phi_{\text{error}} \text{)} \]

\(\Phi_{\text{reference}} \) requested

\(\Phi_{\text{mode}} \) from magnetic signals

reference

mode

Choi/MHD Workshop/Nov. 2016
Proportional-integral controller for mode phase as implemented in DIII-D

\[\Phi_{\text{error}} = \Phi_{\text{ref}} - \Phi_{\text{mode}} \]

\[\Phi_{\text{correction}} = \text{PI control} \left(\Phi_{\text{error}} \right) \]

\[\Phi_{\text{RMP}} = \Phi_{\text{mode}} + \Phi_{\text{corr.}} \]

Limit to \(\Phi_{\text{mode}} \pm 90^\circ \) for max torque

\(\Phi_{\text{reference}} \)

requested

\(\Phi_{\text{mode}} \)

from magnetic signals

\(\alpha_{\text{mode}} \)

max torque

\(\text{RMP} \)
Proportional-integral controller for mode phase as implemented in DIII-D

\[
\Phi_{\text{error}} = \Phi_{\text{ref}} - \Phi_{\text{mode}}
\]

\[
\Phi_{\text{correction}} = \text{PI control (}\Phi_{\text{error}})\]

\[
\Phi_{\text{RMP}} = \Phi_{\text{mode}} + \Phi_{\text{corr}}.
\]

Limit to \(\Phi_{\text{mode}} \pm 90^\circ\) for max torque

Applied to coils
Experimental results on DIII-D match well with simulation

- When RMP was applied, successful demonstration of controller’s ability to prescribe phase and entrain at 20 Hz
Outline

• Introduction
• Mode entrainment
 • Preemptive entrainment
 • Feedback controller
 • Mode phase control
• Electron cyclotron current drive (ECCD) deposition
 • Deposition location
 • Mode amplitude evolution
• Conclusions and future work
Verifying ECCD deposition timing and location

- at 2810 ms, $\Phi_{LM} = -72^\circ = 288^\circ$ (peak B_R at outboard mid-plane)
- at same time, at poloidal angle of 135°, X-point is also at ~285°
- Toroidal deposition of ECH power is between 251° to 299°
- $\Phi_{LM} = \Phi_{ECCD}$ implies X-point deposition
Modulated ECCD in phase with island obtained amplitude modulation, but not full suppression

- Mode amplitude decreases as soon as ECCD is switched on
- but grows again when ECCD is in ‘off’ state
Changing relative phasing gives different behaviour

a) Nominal O–point deposition

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>3060</th>
<th>3090</th>
<th>3120</th>
<th>3150</th>
<th>3180</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM amp [G]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ECH Power [MW]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

b) Nominal X–point deposition

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>3060</th>
<th>3090</th>
<th>3120</th>
<th>3150</th>
<th>3180</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM amp [G]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ECH Power [MW]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

c) Nominal X–to-O points transition

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>4770</th>
<th>4800</th>
<th>4830</th>
<th>4860</th>
<th>4890</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM amp [G]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>ECH Power [MW]</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
Ray-tracing code shows ECCD radial misalignment

- Result from EFIT02 for shot 166567 at 2805 ms
Modeling mode amplitude with MRE (work in progress)

- Attempting to match observed results with modified Rutherford equation predictions
- will include all relevant terms from the MRE

$$\frac{\tau_R}{r} \frac{dw}{dt} = \Delta'(w) r + \epsilon^{1/2} \left(\frac{L_q}{L_p} \right) \beta_\theta \left[\frac{rw}{w^2 + w_d^2} - \frac{rw_{pol}^2}{w^3} - \frac{8q\delta_{ec} \eta_j \epsilon}{\pi^2 w^2} \left(j_{bs} \right) \right]$$
Conclusions

- Previous work simulates mode dynamics and interaction with applied RMP at DIII-D

- Entrainment of 2/1 islands, both preemptively and in feedback, was demonstrated

- ECCD can be synchronized to be deposited only in the island O-point, which is expected to increase mode suppression efficiency
Future work

- Continue to study mode amplitude evolution under modulated ECCD, using coherent averaging technique to suppress noise

- Improve the controller to apply RMP with varying amplitude, fixed at 90° from mode phase

- Extend controller to higher frequency (~100 Hz), which will include real-time compensation for wall shielding on mode phase measurement