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Locked islands cool plasma edge mostly by convection 

F.C Schüller, PPCF 1995
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Nearly all JET disruptions eventually exhibit Mode Locking

P. De Vries et al., NF 2011
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(b)

Å Study performed on shots 122000 to 159837 (2005 to 2014 )

Å 28% of all disruptions in shots with peak ȁN >1.5 are due to 

IRLMs, compared with 18% for all peak ȁN

Å Born locked modes not considered in this work

More than a quarter of high ɓN disruptions are due to 

IRLMs (fraction due to BLMs unknown)
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Å Prediction

ï Database of Locked Modes at DIII -D

Å Typical evolution, including deceleration, saturation, final growth

Å When do they cause disruptions?

Å How do they cause Thermal Quench? 

ïWhen do they lock? 

Å Solve Eq. of Motion

Å Future work: couple with Modified Rutherford Eq.

Å Avoidance & Control 

ï Static or rotating RMPs + ECCD Ą disruption avoidance

ï Preemptive entrainment Ą locking avoidance

ï Feedback controller of locked mode phase

ï Magnetic control in present devices (ITPA, WG -11)

ï Modeling for ITER

Outline
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1. m / n = 2/1 rotating mode 

2. Mode locks 

3. Exists as locked mode 

ï Few to thousands of milliseconds 

ï Referred to as survival time for 

disruptive IRLMs

4. Disrupts oré 

éceases to be a locked mode 

ï decays 

ï or spins up

Example of an initially rotating locked mode (IRLM )
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Å Slow down time = time between     

2 kHz rotation and locking

Å Indication of time available to 

prevent locking

Å Larger Twall results in shorter slow -

down time

66% of 2/1 NTMs rotating at 2 kHz will lock in 45 ± 10 ms
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Å Survival time = time between locking and disruption

Å 66% of disruptive modes terminate between 150 to 1010 ms

Disruptive IRLMs most frequently survive 270 ± 60ms

0.0 0.4 0.8 1.2
bp at saturation

0.0

1.5

3.0

S
u

rv
iv

a
l 

T
im

e
 (

s
)

0 2 4 6 8 10 12 14
dedge (cm) at saturation

0.0

1.5

3.0

0 5 10 15 20 25 30
dI (kA) at saturation

0.0

1.5

3.0
(a) (b) (c)

S
u

rv
iv

a
l 

ti
m

e
 (

s
)



10

Å dedge might pertain to physics of the thermal quench onset

Disruptive IRLMs with small dedge do not survive long
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ὍὙὒὓ ὈὭίὶόὴὸὭὺὭὸώ=  
ὔόάὦὩὶ έὪ ὨὭίὶόὴὸὭὺὩ ὍὙὒὓί

ὔόάὦὩὶ έὪ ὍὙὒὓί
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Disruptive 2/1 widths at Ó 20 ms prior to the disruption are 

similar to non -disruptive at 100 ms before decay/spin -up

Å Te from Electron 

Cyclotron Emission 
(ECE) diagnostic

Å Island O -point 

aligned with ECE in 

all profiles

Å Flattening at q=2 

shows similar widths
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IRLM disruptivity scales strongly with normalized q=2 
radius ɟq2 (fixing q95), and weakly with q95 (fixing ɟq2)

(a) In 1D projections (blue histograms), IRLM disruptivity appears to 
depend on both �!q2 and q 95

(b) Fixing �!q2 shows that IRLM disruptivity scales weakly with q 95

(c) Fixing q 95 shows IRLM disruptivity depends strongly on �!q2
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