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Locked islands cool plasma edge mostly by convection
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Nearly all JET disruptions eventually exhibit Mode Locking
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More than a quarter of high b, disruptions are due to

IRLMSs (fraction due to BLMs unknown)

@ Survey of 22511 plasma discharges (b) Survey of 16123 discharges of B>1.5
5503 B 971 307 9983 Shots with IRLM 5724 A8 302 Shots with IRLMs
- = excluded IRLM 978 = exdluded IRLM

B non-disruptive IRLMs B gﬂj\r/ueplwe IRLMS

disruptive IRLMS Shots without IRLMs
Shots without IRLM disruntions Without LV
m disrupti

= disruptions without LS nzlt i
normal discharge = hor ' ges

B 2/1 rotating NTMs B 2/1 rotating NTMs

A Study performed on shots 122000 to 159837 (2005 to 2014 )

A 28%o0of all disrupti onsy>l5areslledt s wi t

IRLMs, compared with 18% for all p e a ky a

A Born locked modes not considered in this work
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Outline

A Prediction

I Database of Locked Modes at DIll  -D
A Typical evolution, including deceleration, saturation, final growth
A When do they cause disruptions?
A How do they cause Thermal Quench?

I When do they lock?
A Solve Eq. of Motion
A Future work: couple with Modified Rutherford Eq.

A Avoidance & Control
I Static or rotating RMPs + ECCD A disruption avoidance
I Preemptive entrainment A locking avoidance
I Feedback controller of locked mode phase
I Magnetic control in present devices (ITPA, WG -11)
I Modeling for ITER
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A Prediction

I Database of Locked Modes at DIll  -D
A Typical evolution, including deceleration, saturation, final growth
A When do they cause disruptions?
A How do they cause Thermal Quench?
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Example of an initially rotating locked mode (IRLM
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66% of 2/1 NTMsrotating at 2 kHz will lockin 45 + 10 ms
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No. Occurrences

Disruptive IRLMs most frequently survive 270 £ 60ms

A Survival time = time between locking and disruption
A 66% of disruptive modes terminate between 150 to 1010 ms
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Distribution of 1011 LM/QSM Events
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Disruptive IRLMs with small d4,, do not survive long

A dedge
Parameter | Correlation with ¢,
dedqe 0.47]
Pq2 -0.42
li/ qos -0.39
dos 0.36
Bp 0.34
dq/dr(rq) -0.15
L; -0.11
w 0.10
ol -0.01 ¥
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might pertain to physics of the thermal quench onset
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Di srupti ve 2/ 1mswiiodtd thes disauptionOare 0O

similar to non -disruptive at 100 ms before decay/spin -up

24 Disruptive IRLMs 23 Non-disruptive IRLMs
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IRLMdisruptivity scales strongly with normalized q=2

radius } ,, (fixing ggs), and weakly with g (fiXing } )

(a) In 1D projections (blue histograms), IRLM  disruptivity appears to
depend on both !, and Qg

(b) Fixing !, shows that IRLM disruptivity scales weakly with g5

(c) Fixing q45 shows IRLMdisruptivity depends stronglyon !,
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